Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Atmospheric rivers (ARs) are the primary mechanism for transporting water vapor from low latitudes to polar regions, playing a significant role in extreme weather in both the Arctic and Antarctica. With the rapidly growing interest in polar ARs during the past decade, it is imperative to establish an objective framework quantifying the strength and impact of these ARs for both scientific research and practical applications. The AR scale introduced by Ralph et al. (2019) ranks ARs based on the duration of AR conditions and the intensity of integrated water vapor transport (IVT). However, the thresholds of IVT used to rank ARs are selected based on the IVT climatology at middle latitudes. These thresholds are insufficient for polar regions due to the substantially lower temperature and moisture content. In this study, we analyze the IVT climatology in polar regions, focusing on the coasts of Antarctica and Greenland. Then we introduce an extended version of the AR scale tuned to polar regions by adding lower IVT thresholds of 100, 150, and 200 kg m−1 s−1 to the standard AR scale, which starts at 250 kg m−1 s−1. The polar AR scale is utilized to examine AR frequency, seasonality, trends, and associated precipitation and surface melt over Antarctica and Greenland. Our results show that the polar AR scale better characterizes the strength and impacts of ARs in the Antarctic and Arctic regions than the original AR scale and has the potential to enhance communication across observational, research, and forecasting communities in polar regions.more » « less
-
Free, publicly-accessible full text available March 1, 2026
-
Abstract Clouds and radiation play an important role in warming events over the Southern Ocean (SO). Here we evaluate European Center for Medium‐Range Weather Forecasts Reanalysis version 5 (ERA5) and Polar Weather Research Forecast (PWRF) output through comparison to surface‐based measurements of clouds, radiation, and the atmospheric state over the SO during 2017–2023 at Escudero Station (62.2°S, 58.97°W) on King George Island. ERA5 mean monthly downward shortwave (DSW) radiative fluxes are found to be 38–50 W m−2higher than observations in summer, whereas ERA5 mean monthly downward longwave (DLW) is biased by −18 to −22 W m−2in summer and −16 W m−2on average over the year. Comparisons of temperature, humidity, and lowest‐cloud base heights between ERA5 and observations rule these factors out as large contributors to the DLW flux biases. The similarity between observed DLW cloud forcing distributions for atmospheric columns containing low‐level liquid and ice‐only clouds suggests limited influence of cloud phase errors on DLW biases. Thus the most likely explanation for DLW flux biases in ERA5 is underestimated cloud optical depth, which is also consistent with DSW flux biases. Similar biases in ERA5 are found during atmospheric river (AR) events. By contrast, PWRF flux bias magnitudes are much smaller during AR events (−12 W m−2for DSW and −2 W m−2for DLW). After bias correction, ERA5 monthly average net cloud forcing over 2017–2023 is found to be a minimum of −107 W m−2in January and a maximum of 65 W m−2in June.more » « less
-
Abstract The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) held seven targeted observing periods (TOPs) during the 2022 austral winter to enhance atmospheric predictability over the Southern Ocean and Antarctica. The TOPs of 5–10-day duration each featured the release of additional radiosonde balloons, more than doubling the routine sounding program at the 24 participating stations run by 14 nations, together with process-oriented observations at selected sites. These extra sounding data are evaluated for their impact on forecast skill via data denial experiments with the goal of refining the observing system to improve numerical weather prediction for winter conditions. Extensive observations focusing on clouds and precipitation primarily during atmospheric river (AR) events are being applied to refine model microphysical parameterizations for the ubiquitous mixed-phase clouds that frequently impact coastal Antarctica. Process studies are being facilitated by high-time-resolution series of observations and forecast model output via the YOPP Model Intercomparison and Improvement Project (YOPPsiteMIIP). Parallel investigations are broadening the scope and impact of the YOPP-SH winter TOPs. Studies of the Antarctic tourist industry’s use of weather services show the scope for much greater awareness of the availability of forecast products and the skill they exhibit. The Sea Ice Prediction Network South (SIPN South) analysis of predictions of the sea ice growth period reveals that the forecast skill is superior to the sea ice retreat phase.more » « less
-
Roy M. Harrison (Ed.)Abstract The Antarctic Peninsula (AP) experienced a new extreme warm event and record-high surface melt in February 2022, rivaling the recent temperature records from 2015 and 2020, and contributing to the alarming series of extreme warm events over this region showing stronger warming compared to the rest of Antarctica. Here, the drivers and impacts of the event are analyzed in detail using a range of observational and modeling data. The northern/northwestern AP was directly impacted by an intense atmospheric river (AR) attaining category 3 on the AR scale, which brought anomalous heat and rainfall, while the AR-enhanced foehn effect further warmed its northeastern side. The event was triggered by multiple large-scale atmospheric circulation patterns linking the AR formation to tropical convection anomalies and stationary Rossby waves, with an anomalous Amundsen Sea Low and a record-breaking high-pressure system east of the AP. This multivariate and spatial compound event culminated in widespread and intense surface melt across the AP. Circulation analog analysis shows that global warming played a role in the amplification and increased probability of the event. Increasing frequency of such events can undermine the stability of the AP ice shelves, with multiple local to global impacts, including acceleration of the AP ice mass loss and changes in sensitive ecosystems.more » « less
-
Distinct events of warm and moist air intrusions (WAIs) from mid-latitudes have pronounced impacts on the Arctic climate system. We present a detailed analysis of a record-breaking WAI observed during the MOSAiC expedition in mid-April 2020. By combining Eulerian with Lagrangian frameworks and using simulations across different scales, we investigate aspects of air mass transformationsviacloud processes and quantify related surface impacts. The WAI is characterized by two distinct pathways, Siberian and Atlantic. A moist static energy transport across the Arctic Circle above the climatological 90th percentile is found. Observations at research vessel Polarstern show a transition from radiatively clear to cloudy state with significant precipitation and a positive surface energy balance (SEB), i.e., surface warming. WAI air parcels reach Polarstern first near the tropopause, and only 1–2 days later at lower altitudes. In the 5 days prior to the event, latent heat release during cloud formation triggers maximum diabatic heating rates in excess of 20 K d-1. For some poleward drifting air parcels, this facilitates strong ascent by up to 9 km. Based on model experiments, we explore the role of two key cloud-determining factors. First, we test the role moisture availability by reducing lateral moisture inflow during the WAI by 30%. This does not significantly affect the liquid water path, and therefore the SEB, in the central Arctic. The cause are counteracting mechanisms of cloud formation and precipitation along the trajectory. Second, we test the impact of increasing Cloud Condensation Nuclei concentrations from 10 to 1,000 cm-3(pristine Arctic to highly polluted), which enhances cloud water content. Resulting stronger longwave cooling at cloud top makes entrainment more efficient and deepens the atmospheric boundary layer. Finally, we show the strongly positive effect of the WAI on the SEB. This is mainly driven by turbulent heat fluxes over the ocean, but radiation over sea ice. The WAI also contributes a large fraction to precipitation in the Arctic, reaching 30% of total precipitation in a 9-day period at the MOSAiC site. However, measured precipitation varies substantially between different platforms. Therefore, estimates of total precipitation are subject to considerable observational uncertainty.more » « less
-
Abstract The Antarctica Peninsula (AP) has experienced more frequent and intense surface melting recently, jeopardizing the stability of ice shelves and ultimately leading to ice loss. Among the key phenomena that can initiate surface melting are atmospheric rivers (ARs) and leeside foehn; the combined impact of ARs and foehn led to moderate surface warming over the AP in December 2018 and record‐breaking surface melting in February 2022. Focusing on the more intense 2022 case, this study uses high‐resolution Polar WRF simulations with advanced model configurations, Reference Elevation Model of Antarctica topography, and observed surface albedo to better understand the relationship between ARs and foehn and their impacts on surface warming. With an intense AR (AR3) intrusion during the 2022 event, weak low‐level blocking and heavy orographic precipitation on the upwind side resulted in latent heat release, which led to a more deep‐foehn like case. On the leeside, sensible heat flux associated with the foehn magnitude was the major driver during the night and the secondary contributor during the day due to a stationary orographic gravity wave. Downward shortwave radiation was enhanced via cloud clearance and dominated surface melting during the daytime, especially after the peak of the AR/foehn events. However, due to the complex terrain of the AP, ARs can complicate the foehn event by transporting extra moisture to the leeside via gap flows. During the peak of the 2022 foehn warming, cloud formation on the leeside hampered the downward shortwave radiation and slightly increased the downward longwave radiation.more » « less
-
null (Ed.)Abstract The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) had a special observing period (SOP) that ran from 16 November 2018 to 15 February 2019, a period chosen to span the austral warm season months of greatest operational activity in the Antarctic. Some 2,200 additional radiosondes were launched during the 3-month SOP, roughly doubling the routine program, and the network of drifting buoys in the Southern Ocean was enhanced. An evaluation of global model forecasts during the SOP and using its data has confirmed that extratropical Southern Hemisphere forecast skill lags behind that in the Northern Hemisphere with the contrast being greatest between the southern and northern polar regions. Reflecting the application of the SOP data, early results from observing system experiments show that the additional radiosondes yield the greatest forecast improvement for deep cyclones near the Antarctic coast. The SOP data have been applied to provide insights on an atmospheric river event during the YOPP-SH SOP that presented a challenging forecast and that impacted southern South America and the Antarctic Peninsula. YOPP-SH data have also been applied in determinations that seasonal predictions by coupled atmosphere–ocean–sea ice models struggle to capture the spatial and temporal characteristics of the Antarctic sea ice minimum. Education, outreach, and communication activities have supported the YOPP-SH SOP efforts. Based on the success of this Antarctic summer YOPP-SH SOP, a winter YOPP-SH SOP is being organized to support explorations of Antarctic atmospheric predictability in the austral cold season when the southern sea ice cover is rapidly expanding.more » « less
An official website of the United States government
